

Form C: Type Test Verification Report

Type Approval and Manufacturer declaration of compliance with the requirements of G98/NI..

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI..

Manufactur	er's referen	ce number	SPH 10000TL3 BH-UP.			
Micro-generator technology			SPH 4000TL3 BH-UP, SPH 5000TL3 BH-UP, SPH 6000TL3 BH-UP, SPH 7000TL3 BH-UP, SPH 8000TL3 BH-UP, SPH 10000TL3 BH-UP.			
Manufactur	er name		Shenzhen	Growatt New E	Energy Co., Ltd.	
Address			Demonstra	4-13th Floor, Building A, Sino-German Europe Industrial Demonstration Park, No. 1, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong, China.		
Tel	+86 755 29	51 5888		Fax	+86 755 2747 2131	
E-mail	Peng.zhu@	growatt.com		Web site	www.ginverter.com	
		Connection (Option			
Registered use separate	e sheet if	N/A	kW single	ohase, single, sp	lit or three phase system	
more than of connection of		4-10	kW three p	hase		
N/A		kW two phases in three phase system				
N/A			kW two phases split phase system			
Manufactur	er Tyne Tes	st declaration	- I certify tha	it all products su	onlied by the company with the above	

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98/NI..

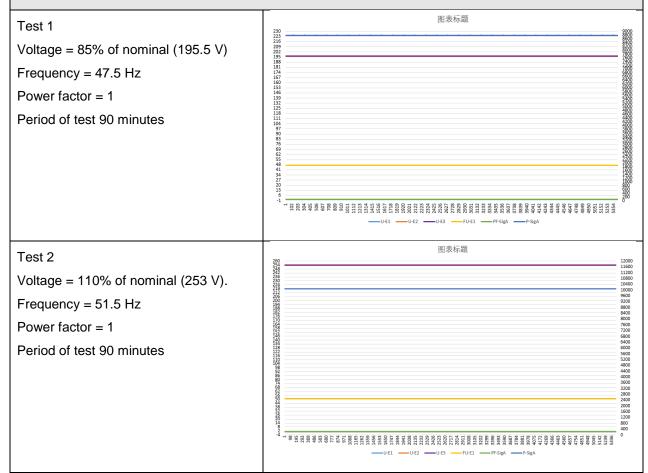
Signed	Jeng Zhu	On behalf of	Shenzhen Growatt New Energy Co., Ltd.
	\sim		

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that

the testing has been carried out by people with sufficient technical competency to carry out the tests.

1.Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

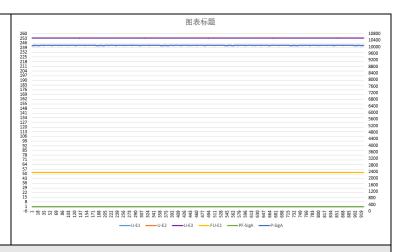

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.


Test 3

Voltage = 110% of nominal (253 V).

Frequency = 52.0 Hz

Power factor = 1

Period of test 15 minutes

2.Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-g	Micro-generator rating per phase (rpp)		3.33		kW	N	IV=MV*3.68/rpp
Harmonic	At 45-55% of Re		100% of Registered Capacity				
		Average	harmonic c	urren	t results –	Phase 1	
	Measured Value MV in Amps	NV	Measured Value MV Amps	' in	NV	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.3189	0.3521	0.4092		0.4518	1.080	
3	0.0322	0.0356	0.0327		0.0361	2.300	
4	0.2036	0.2248	0.2937		0.3243	0.430	
5	0.0704	0.0777	0.1461		0.1613	1.140	
6	0.0083	0.0092	0.0111		0.0123	0.300	
7	0.0440	0.0486	0.1065		0.1176	0.770	
8	0.0254	0.0280	0.0378		0.0417	0.230	
9	0.0117	0.0129	0.0108		0.0119	0.400	
10	0.0518	0.0572	0.0533		0.0588	0.184	

Г	T	T	T	T	T	
11	0.0228	0.0252	0.0351	0.0388	0.330	
12	0.0085	0.0094	0.0083	0.0092	0.153	
13	0.0448	0.0495	0.0575	0.0635	0.210	
14	0.0618	0.0682	0.0624	0.0689	0.131	
15	0.0119	0.0131	0.0072	0.0079	0.150	
16	0.0489	0.0540	0.0539	0.0595	0.115	
17	0.0415	0.0458	0.0605	0.0668	0.132	
18	0.0073	0.0081	0.0079	0.0087	0.102	
19	0.0195	0.0215	0.0490	0.0541	0.118	
20	0.0375	0.0414	0.0428	0.0473	0.092	
21	0.0101	0.0112	0.0079	0.0087	0.107	0.160
22	0.0366	0.0404	0.0497	0.0549	0.084	
23	0.0146	0.0161	0.0408	0.0450	0.098	0.147
24	0.0038	0.0042	0.0075	0.0083	0.077	
25	0.0177	0.0195	0.0299	0.0330	0.090	0.135
26	0.0179	0.0198	0.0296	0.0327	0.071	
27	0.0039	0.0043	0.0037	0.0041	0.083	0.124
28	0.0126	0.0139	0.0194	0.0214	0.066	
29	0.0204	0.0225	0.0324	0.0358	0.078	0.117
30	0.0033	0.0036	0.0042	0.0046	0.061	
31	0.0243	0.0268	0.0229	0.0253	0.073	0.109
32	0.0117	0.0129	0.0183	0.0202	0.058	
33	0.0047	0.0052	0.0049	0.0054	0.068	0.102
34	0.0146	0.0161	0.0155	0.0171	0.054	
35	0.0158	0.0174	0.0155	0.0171	0.064	0.096
36	0.0124	0.0137	0.0091	0.0100	0.051	
37	0.0140	0.0155	0.0350	0.0386	0.061	0.091

38	0.0176	0.0194	0.0196	0.0216	0.048	
39	0.0048	0.0053	0.0091	0.0100	0.058	0.087
40	0.0082	0.0091	0.0041	0.0045	0.046	
		Average	harmonic currer	nt results -	- Phase 2	
	Measured Value MV in Amps	Normali sed Value (NV) in Amps	Measured Value MV in Amps	Normali sed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.2478	0.2736	0.3220	0.3555	1.080	
3	0.0237	0.0262	0.0335	0.0370	2.300	
4	0.2093	0.2311	0.2759	0.3046	0.430	
5	0.0738	0.0815	0.1545	0.1706	1.140	
6	0.0201	0.0222	0.0285	0.0315	0.300	
7	0.0434	0.0479	0.1056	0.1166	0.770	
8	0.0345	0.0381	0.0380	0.0420	0.230	
9	0.0083	0.0092	0.0101	0.0112	0.400	
10	0.0447	0.0494	0.0425	0.0469	0.184	
11	0.0258	0.0285	0.0438	0.0484	0.330	
12	0.0098	0.0108	0.0159	0.0176	0.153	
13	0.0515	0.0569	0.0578	0.0638	0.210	
14	0.0537	0.0593	0.0583	0.0644	0.131	
15	0.0072	0.0079	0.0094	0.0104	0.150	
16	0.0455	0.0502	0.0451	0.0498	0.115	
17	0.0405	0.0447	0.0659	0.0728	0.132	
18	0.0076	0.0084	0.0134	0.0148	0.102	
19	0.0256	0.0283	0.0503	0.0555	0.118	
20	0.0330	0.0364	0.0369	0.0407	0.092	
21	0.0081	0.0089	0.0107	0.0118	0.107	0.160

3	0.2084	0.2301	0.4651	0.5135	2.300	
	Measured Value MV in Amps	(NV) in Amps	Measured Value MV in Amps	Normali sed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
			harmonic currer		- Phase 3	
40	0.0058	0.0064	0.0159	0.0176	0.046	
39	0.0019	0.0021	0.0081	0.0089	0.058	0.087
38	0.0116	0.0128	0.0070	0.0077	0.048	
37	0.0180	0.0199	0.0359	0.0396	0.061	0.091
36	0.0040	0.0044	0.0083	0.0092	0.051	
35	0.0186	0.0205	0.0166	0.0183	0.064	0.096
34	0.0080	0.0088	0.0096	0.0106	0.054	
33	0.0050	0.0055	0.0075	0.0083	0.068	0.102
32	0.0120	0.0132	0.0164	0.0181	0.058	
31	0.0205	0.0226	0.0250	0.0276	0.073	0.109
30	0.0059	0.0065	0.0066	0.0073	0.061	
29	0.0207	0.0229	0.0366	0.0404	0.078	0.117
28	0.0136	0.0150	0.0157	0.0173	0.066	
27	0.0028	0.0031	0.0033	0.0036	0.083	0.124
26	0.0194	0.0214	0.0316	0.0349	0.071	
25	0.0187	0.0206	0.0275	0.0304	0.090	0.135
24	0.0077	0.0085	0.0095	0.0105	0.077	
23	0.0171	0.0189	0.0471	0.0520	0.098	0.147
22	0.0341	0.0377	0.0386	0.0426	0.084	

		ı	ı			
6 0	0.0216	0.0238	0.0313	0.0346	0.300	
7 0	0.0401	0.0443	0.1016	0.1122	0.770	
8 0).0342	0.0378	0.0353	0.0390	0.230	
9 0	0.0110	0.0121	0.0128	0.0141	0.400	
10 0).0455	0.0502	0.0538	0.0594	0.184	
11 0	0.0346	0.0382	0.0419	0.0463	0.330	
12 0	0.0099	0.0109	0.0123	0.0136	0.153	
13 0).0477	0.0527	0.0542	0.0598	0.210	
14 0	0.0552	0.0609	0.0659	0.0728	0.131	
15 0	0.0083	0.0092	0.0049	0.0054	0.150	
16 0	0.0421	0.0465	0.0484	0.0534	0.115	
17 0	0.0504	0.0556	0.0651	0.0719	0.132	
18 0	0.0069	0.0076	0.0116	0.0128	0.102	
19 0	0.0236	0.0261	0.0466	0.0515	0.118	
20 0	0.0317	0.0350	0.0367	0.0405	0.092	
21 0	0.0035	0.0039	0.0053	0.0059	0.107	0.160
22 0	0.0320	0.0353	0.0416	0.0459	0.084	
23 0	0.0220	0.0243	0.0461	0.0509	0.098	0.147
24 0	0.0066	0.0073	0.0094	0.0104	0.077	
25 0	0.0154	0.0170	0.0207	0.0229	0.090	0.135
26 0	0.0196	0.0216	0.0317	0.0350	0.071	
27 0	0.0045	0.0050	0.0035	0.0039	0.083	0.124
28 0	0.0112	0.0124	0.0147	0.0162	0.066	
29 0	0.0233	0.0257	0.0375	0.0414	0.078	0.117
30 0	0.0067	0.0074	0.0068	0.0075	0.061	
31 0	0.0213	0.0235	0.0256	0.0283	0.073	0.109
32 0	0.0044	0.0049	0.0109	0.0120	0.058	

33	0.0051	0.0056	0.0065	0.0072	0.068	0.102
34	0.0152	0.0168	0.0154	0.0170	0.054	
35	0.0191	0.0211	0.0179	0.0198	0.064	0.096
36	0.0130	0.0144	0.0161	0.0178	0.051	
37	0.0143	0.0158	0.0368	0.0406	0.061	0.091
38	0.0171	0.0189	0.0248	0.0274	0.048	
39	0.0017	0.0019	0.0069	0.0076	0.058	0.087
40	0.0125	0.0138	0.0140	0.0155	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

3.Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

	Starting			Stoppin	ng		Runni	ng	
	d max	d c	d(t)	d max	d c	d(t)	Pst		P _{lt} 2 hours
Measured Values at test impedance	0.77	0.42	0	0.63	0.35	0	0.31		0.29
Normalised to standard impedance	0.77	0.42	0	0.63	0.35	0	0.31		0.29
Normalised to required maximum impedance									
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0		0.65
Test	R	0.24		Ω	Х		0.15	Ω	

Impedance						
Standard Impedance	R	0.24 * 0.4 ^	Ω	Х	0.15 * 0.25 ^	Ω
Maximum Impedance	R	-	Ω	Х	-	Ω

Applies to three phase and split single phase Micro-generators.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start date	16,Sep,2022	Test end date	16, Sep,2022
Test location	Growatt certified testin	g laboratory	

4.Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10

Test power level (10K)	20%	50%	75%	100%
Recorded value in Amps	27.71mA/14.58mA / 13.11mA	30.40mA/14.41mA/ 15.88mA	30.50mA/14.61mA/ 15.99mA	31.95mA/16.03mA/ 15.87mA
as % of rated AC current	0.19%/0.10%/ 0.09%	0.21%/0.10%/ 0.11%	0.21%/0.10%/ 0.11%	0.22%/0.11%/ 0.11%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (8K)	20%	50%	75%	100%
Recorded value in Amps	20.79mA/10.35mA / 10.56mA	22.17mA/10.30mA/ 11.44mA	22.18mA/11.42mA/ 10.37mA	24.21mA/12.60mA/ 11.73mA
as % of rated	0.18%/0.09%/	0.19%/0.09%/	0.19%/0.10%/	0.21%/0.11%/ 0.10%

AC current	0.09%)	0.10%		0.09%	6	
Limit	0.25%)	0.25%		0.25%	6	0.25%
Test power level (7K)			50%		75%		100%
Recorded value in Amps	17.39r 9.07m	mA/8.24mA/ A	18.33mA 9.08mA	/9.21mA/	19.33 10.11	mA/9.25mA/ mA	21.48mA/11.20mA/ 10.06mA
as % of rated AC current			0.18%/0. 0.09%	09%/	0.19% 0.10%	%/0.09%/ %	0.21%/0.11%/ 0.10%
Limit	0.25%)	0.25%		0.25%	6	0.25%
Test power level (6K)	20%		50%		75%		100%
Recorded value in Amps	13.20r 6.86m	mA/6.18mA/ A	14.89mA 6.99mA	/7.74mA/	15.73 8.60n	smA/6.84mA/ nA	15.47mA/7.77mA/ 7.89mA
as % of rated AC current			0.17%/0. 0.08%	09%/	0.18% 0.10%	%/0.08%/ %	0.18%/0.09%/ 0.09%
Limit	0.25%		0.25%		0.25%	6	0.25%
Test power level (5K)	20%		50%		75%		100%
Recorded value in Amps	10.22r 5.01m	mA/5.13mA/ A	10.92mA/5.72mA/ 7.21mA		10.82 7.02n	mA/5.75mA/ nA	11.66mA/5.89mA/ 5.82mA
as % of rated AC current	0.14% 0.07%	6/0.07%/	0.15%/0. 0.07%	08%/	0.15%/0.08%/ 0.07%		0.16%/0.08%/ 0.08%
Limit	0.25%)	0.25%		0.25%	6	0.25%
Test power level (4K)	20%		50%	50%			100%
Recorded value in Amps	7.33m 3.50m	A/3.68mA/ A	7.60mA/2 4.01mA	2.96mA/	8.79n 4.77n	nA/4.12mA/ nA	8.78mA/4.03mA/ 4.69mA
as % of rated AC current	0.12% 0.06%	0/0.06%/	0.13%/0. 0.07%	05%/	0.15% 0.08%	%/0.07%/ %	0.15%/0.07%/ 0.08%
Limit	0.25%)	0.25%		0.25%	6	0.25%
	h nomir						with EN 50548 Annex nin ±1.5% of the stated
216.2 V 230 V 253 V							

20% of Registered Capacity	0.9758	0.9776	0.9791
50% of Registered Capacity	0.9864	0.9896	0.9912
75% of Registered Capacity	0.9924	0.9933	0.9939
100% of Registered Capacity	0.9979	0.9982	0.9992
Limit	>0.95	>0.95	>0.95

6.Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests"			
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip		
U/F	48.0 Hz	0.5 s	47.99Hz	0.523s	48.2Hz 25 s	No trip		
					47.8 Hz 0.45s	No trip		
O/F	52 Hz	1.0 s	52.00 Hz	1.028 s	51.8 Hz 120s	No trip		
					52.2 Hz 0.98 s	No trip		

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7.Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98/NI Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V stage 1	195.5 V	3 s	194.85V	3 .025s	199.5 V 5s	No trip	

U/V stage 2	138 V	2 s	137.28V	2 .031s	142 V 2.5 s	No trip
					134 V 1.98 s	No trip
O/V	253 V	0.5 s	253.79 V	0.522s	249 V 5 s	No trip
					257 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.298s	0.312s	0.323s	0.321s	0.330 s	0.359s

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed	0.314 s	0.325s	0.347s	0.333 s	0.352s	0.376 s
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed	0.318 s	0.328 s	0.352 s	0.324 s	0.341 s	0.379 s
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity

Trip time. Ph3 fuse removed	0.330 s		0.341 s	0.355	5 s	0.3	338 s		0.349 s	0.363 s
Note for technolo establishing that the stablishing that the stables are the s	he trip oc	curre								
Indicate additional shut down time included in above results. 40ms										
For Inverters tested to BS EN 62116 the following sub set of tests should be recorded in the following table.										
Test Power and	33%		66%	100%	6	33	3%		66%	100%
imbalance	-5% Q		-5% Q	-5%	Р	+5	5% Q		+5% Q	+5% P
	Test 22		Test 12	Test	5	Te	est 31		Test 21	Test 10
Trip time. Limit is 0.5 s	0.325 s		0.355 s	0.370) s	0.3	343 s		0.378s	0.384 s
9.Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).										
:			Frequency	Chang	е		Conf	irm n	o trip	
Positive Vector Shift			Hz	+50 de	egrees		No T	rip		
Negative Vector S	hift	50.5	Hz	- 50 degrees			No T	rip		
10.Protection – I										
Ramp range		Test	frequency rai	mp:	np: Test Duration Confirm no trip		firm no trip			
49.0 Hz to 51.0 Hz	Z	+0.9	5 Hzs ⁻¹		2.1 s No Trip		Ггір			
51.0 Hz to 49.0 Hz	<u>z</u>	-0.95	5 Hzs ⁻¹		2.1 s			No ⁻	Trip	
11.Limited Frequence accordance with E out using the spec	N 50438	Anne	x D.3.3 Powe	r respo	nse to o	ver	- frequ	uency		
Test sequence at Registered Capacity >80%		Ac	easured etive Power etput		uency	Pr	imary	Powe	er Source	Active Power Gradient
Step a) 50.00 Hz :	±0.01 Hz	10	056.77W	50.0	0Hz	10	10324.76W		1	-
Step b) 50.25 Hz =	±0.05 Hz	98	19.58W	50.2	5Hz					-
Step c) 50.70 Hz ±	±0.10 Hz	75	60.47W	50.6	9Hz	z			-	
Step d) 51.15 Hz :	±0.05 Hz	52	97.11W	51.1	6Hz	-			-	

Step e) 50.70 Hz ±0.10 Hz 7552.48W 50.69Hz - Step f) 50.25 Hz ±0.05 Hz 9812.67W 50.26Hz - Step g) 50.00 Hz ±0.01 Hz 10068.47W 50.01Hz Frequency Primary Power Source Active Power Gradient Step a) 50.00 Hz ±0.01 Hz 5029.61W 50.00Hz 5178.44W - Step b) 50.25 Hz ±0.05 Hz 4783.28W 50.25Hz - Step c) 50.70 Hz ±0.10 Hz 2567.11W 50.69Hz - Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz - Step e) 50.70 Hz ±0.10 Hz 2563.95W 50.70Hz -					
Step g) 50.00 Hz ±0.01 Hz 10068.47W 50.01Hz Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Primary Power Source Active Power Gradient Step a) 50.00 Hz ±0.01 Hz 5029.61W 50.00Hz 5178.44W - Step b) 50.25 Hz ±0.05 Hz 4783.28W 50.25Hz - Step c) 50.70 Hz ±0.10 Hz 2567.11W 50.69Hz - Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz -	Step e) 50.70 Hz ±0.10 Hz	7552.48W	50.69Hz		_
Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Primary Power Source Active Power Gradient Step a) 50.00 Hz ±0.01 Hz 5029.61W 50.00Hz 5178.44W - Step b) 50.25 Hz ±0.05 Hz 4783.28W 50.25Hz - Step c) 50.70 Hz ±0.10 Hz 2567.11W 50.69Hz - Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz -	Step f) 50.25 Hz ±0.05 Hz	9812.67W	50.26Hz		-
Registered Capacity 40% - 60% Active Power Output Power Gradient Step a) 50.00 Hz ±0.01 Hz 5029.61W 50.00Hz 5178.44W - Step b) 50.25 Hz ±0.05 Hz 4783.28W 50.25Hz - Step c) 50.70 Hz ±0.10 Hz 2567.11W 50.69Hz - Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz -	Step g) 50.00 Hz ±0.01 Hz	10068.47W	50.01Hz		
Step b) 50.25 Hz ±0.05 Hz	Registered Capacity 40%	Active Power	Frequency	Primary Power Source	Power
Step c) 50.70 Hz ±0.10 Hz 2567.11W 50.69Hz Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz	Step a) 50.00 Hz ±0.01 Hz	5029.61W	50.00Hz	5178.44W	-
Step d) 51.15 Hz ±0.05 Hz 290.55W 51.14Hz -	Step b) 50.25 Hz ±0.05 Hz	4783.28W	50.25Hz		-
	Step c) 50.70 Hz ±0.10 Hz	2567.11W	50.69Hz		-
Step e) 50.70 Hz ±0.10 Hz 2563.95W 50.70Hz -	Step d) 51.15 Hz ±0.05 Hz	290.55W	51.14Hz		-
	Step e) 50.70 Hz ±0.10 Hz	2563.95W	50.70Hz		-
Step f) 50.25 Hz ±0.05 Hz 4775.41W 50.25Hz -	Step f) 50.25 Hz ±0.05 Hz	4775.41W	50.25Hz		-
Step g) 50.00 Hz ±0.01 Hz 5033.77W 50.01 Hz	Step g) 50.00 Hz ±0.01 Hz	5033.77W	50.01Hz		

Steps as defined in EN 50438

12.Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency.

Test sequence	Measured Active Power Output	Frequency	Primary power source
Test a) 50 Hz ± 0.01 Hz	10055.24 W	50.00 Hz	10342.85 W
Test b) Point between 49.5 Hz and 49.6 Hz	10022.13W	49.54 Hz	10301.79 W
Test c) Point between 47.5 Hz and 47.6 Hz	9986.55W	47.57 Hz	10276.77 W

NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes

13.Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.

Time delay setting	Measured delay		no reconnection w stage 1 limits of ta	hen voltage or freque ble 2.	ency is brought to
60S	70S	At 257.0 V	At 191.5 V	At 47.9 Hz	At 52.1 Hz

Confirmation that the Micro generator does not re-connect.	- Yes	Yes	Yes	3	Yes					
	14.Fault level contribution : These tests shall be carried out in accordance with EREC G98/NI Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).									
For machines with electro-magnetic output For Inverter output										
Parameter	Symbol	Value	Time after fault	Volts	Amps					
Peak Short Circuit current	ĺρ		20 ms	76.9V	27.5A					
Initial Value of aperiodic current	Α		100 ms	73.3V	23.1A					
Initial symmetrical short-circuit current*	I _k		250 ms	69.1V	20.6A					
Decaying (aperiodic) component of short circuit current*	i _{DC}		500 ms	67.4V	12.4A					
Reactance/Resistance Ratio of source*	X/ _R		Time to trip	In seconds						
For rotating machines and linear piston machines the test should produce a $0 ext{ s} - 2 ext{ s}$ plot of the short circuit current as seen at the Micro-generator terminals.										
* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot										
15.Logic Interface.					Yes					
This equipment is equipped with RJ45 terminal for logic interface that being received the signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to zero within 5s.										
	16.Self-Monitoring solid state switching: No specified test requirements. Refer to Yes/or NA EREC G98 Annex A1 A.1.3.6 (Inverter connected).									
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.										
Additional comments										